

Fig. 1. ORTEP drawing of the complex anion with the atomnumbering scheme.

Crystal water oxygen atoms $W 4$ and $W 8$ were not found to have disordered positions as in the Sm salt solved by neutron diffraction (Engel et al., 1984) nor does $W 8$ have such a high temperature factor as in the other structures. Instead, disordered positions of W7 were found ($W 7 A$ and $W 7 B$). The same hydrogenbonding network as in the neutron diffraction study of the Sm complex was found for the Nd salt, except for the bond involving $W 7 B$. The differences in the positions of the crystal water molecules are influenced by the larger K^{+}ion, which is surrounded by seven O
atoms at distances ranging from 2.57 (3) or $2 \cdot 66$ (3) to 2.895 (4) \AA. Bond distances and angles in the edta moiety are normal.

The author thanks Professor C. Djordjevic for helpful discussions and a sample of the $\mathrm{K}_{2} \mathrm{Nd}(\mathrm{OH})$ (edta). $4 \mathrm{H}_{2} \mathrm{O}$ salt. Support by the Foundation for Scientific Research of SR Croatia, Zagreb, is gratefully acknowledged.

References

Diordjević, C. \& Vuletić, N. (1980). Inorg. Chem. 19, 3049-3053.
Engel, D. W., Takusagawa, F. \& Koetzle, T. F. (1984). Acta Cryst. C40, 1687-1693.
Hoard, J. L., Lee, B. \& Lind, M. D. (1965). J. Am. Chem. Soc. 87. 1612-1613.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Lee, B. (1967). Diss. Abstr. B, 28, 84.
Nassimbeni, L. R., Wright, M. R. W., van Niekerk, J. C. \& McCallum, P. A. (1979). Acta Cryst. B35, 1341-1345.
Rogers, D. (1981). Acta Cryst. A37, 734-741.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Templeton, L. K., Templeton, D. H. \& Zalkin, A. (1985). Acta Cryst. C41, 355-358.
Templeton, L. K., Templeton, D. H., Zalkin, A. \& Ruben, H. W. (1982). Acta Cryst. B38, 2155-2159.

Acta Cryst. (1988). C44, 437-439

Structure of trans-Dichloro-cis-dichlorobis(1-propylimidazole)platinum(IV)

By Janina Kuduk-Jaworska, Maria Kubiak and Tadeusz Glowiak
Institute of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland

(Received 5 August 1987; accepted 28 September 1987)

Abstract

PtCl}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right], M_{r}=557 \cdot 2\), monoclinic, $P 2_{1} / a, \quad a=10.015$ (4), $\quad b=16.134$ (6), $\quad c=$ $12 \cdot 175$ (5) $\AA, \beta=108 \cdot 12$ (5) ${ }^{\circ}, V=1869.7$ (9) \AA^{3}, Z $=4, D_{m}=2.00(5), D_{x}=1.98 \mathrm{Mg} \mathrm{m}^{-3}$, Мо $K \alpha, \lambda=$ $0.71069 \AA, \quad \mu=8.46 \mathrm{~mm}^{-1}, \quad F(000)=1064, \quad T=$ 294 (2) K, $R=0.038$ for 2663 unique observed reflections. The complex consists of monomeric $\mathrm{PtCl}_{4}{ }^{-}$ (1-propylimidazole) ${ }_{2}$ units. The coordination geometry is octahedral. The two 1-propylimidazole ligands are cis-coordinated to Pt , the $\mathrm{Pt}-\mathrm{N}$ distances are 2.061 (9) and 2.045 (8) \AA. The $\mathrm{Pt}-\mathrm{Cl}$ distances ranging from $2 \cdot 310$ (3) to $2 \cdot 322$ (3) \AA are normal for complexes of $\mathrm{Pt}^{\mathrm{IV}}$.

0108-2701/88/030437-03\$03.00

Introduction. In contrast to neutral Pt^{11} complexes, the $\mathrm{Pt}^{1 \mathrm{~V}}$ analogues are rather poorly investigated though their biological and therapeutical properties seem to be equally interesting. Therefore we now present the crystal structure of tetrachlorobis(1-propylimidazole)platinum(IV) which we obtained by a modification of the method of Braddock, Connors, Jones, Khokhar, Melzack \& Tobe (1975).

Experimental. $0.48 \mathrm{~g}(0.001 \mathrm{~mol})$ of cis-dichlorobis-(1-propylimidazole)platinum(II) was suspended in 20 ml of 2 MHCl and 4 ml of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$. The mixture was boiled until a yellow solution was obtained, then it © 1988 International Union of Crystallography
was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to remove by-products and the water solution was evaporated. The crude substance was crystallized from dimethylformamide (m.p. 496 K). Yellow crystals $0.14 \times 0.14 \times 0.20 \mathrm{~mm}$. D_{m} by flotation in $\mathrm{CCl}_{4} / 1,2$-dibromoethane, monoclinic from Weissenberg photographs; Syntex $P 2_{1}$ computercontrolled four-circle diffractometer; scintillation counter, graphite monochromator; cell parameters by least

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (\AA^{2}) with e.s.d.'s in parentheses

$B_{\text {eq }}=\frac{1}{3}\left(B_{11}+B_{22}+B_{33}\right)$.				
	x	y	z	$\boldsymbol{B}_{\text {eq }}$
Pt	0.23031 (4)	0.01945 (3)	$0 \cdot 26588$ (3)	2.03 (2)
$\mathrm{Cl}(1)$	0.2041 (3)	0.0989 (2)	$0 \cdot 1026$ (2)	3.7 (2)
$\mathrm{Cl}(2)$	0.4659 (3)	0.0009 (2)	0.2847 (3)	$3 \cdot 8$ (3)
$\mathrm{Cl}(3)$	$0 \cdot 1718$ (3)	-0.0990 (2)	0.1547 (2)	$3 \cdot 3$ (2)
$\mathrm{Cl}(4)$	0.2564 (3)	-0.0590 (2)	0.4311 (2)	$3 \cdot 2$ (2)
N(11)	0.0208 (8)	0.0379 (5)	0.2471 (7)	2.4 (7)
$\mathrm{N}(12)$	-0.2018 (9)	0.0520 (6)	0.1701 (7)	2.9 (7)
$\mathrm{N}(21)$	0.2779 (9)	0.1238 (5)	0.3659 (7)	$2 \cdot 7$ (7)
N(22)	0.3737 (10)	0.2040 (6)	0.5106 (8)	3.6 (8)
C(11)	-0.0768(11)	0.0423 (7)	0.1510 (9)	2.8 (9)
C(12)	-0.0356 (11)	0.0433 (7)	0.3367 (8)	$2 \cdot 9$ (9)
C(13)	-0.1765 (12)	0.0537 (8)	0.2851 (9)	$3 \cdot 5$ (9)
C(14)	-0.3380 (11)	0.0663 (8)	0.0808 (9)	$3 \cdot 5$ (10)
C(15)	-0.3678 (15)	0.1561 (11)	0.0651 (13)	$6 \cdot 1$ (15)
C(16)	-0.5010 (16)	0.1730 (11)	-0.0291 (15)	$7 \cdot 3$ (18)
C(21)	0.3732 (11)	0.1277 (8)	0.4692 (9)	$3 \cdot 0$ (9)
C(22)	0.2179 (15)	$0 \cdot 198$ E (8)	0.3420 (11)	4.7 (12)
C(23)	0.2785 (16)	0.2500 (7)	0.4310 (11)	5.0 (13)
C(24)	0.4598 (15)	0.2313 (8)	0.6269 (11)	4.9 (13)
C(25)	0.5631 (4)	0.2952 (10)	0.6255 (14)	5.9 (15)
C(26)	0.6508 (15)	0.3215 (10)	0.7444 (14)	$5 \cdot 9$ (15)

Table 2. Bond distances (\AA) and angles $\left(^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Pt}-\mathrm{Cl}(1) \quad 2$.	2.311 (3)	$\mathrm{Pt}-\mathrm{Cl}(2) \quad 2.3$	$2 \cdot 318$ (3)
$\mathrm{Pt}-\mathrm{Cl}(3) \quad 2$	2.310 (3)	$\mathrm{Pt}-\mathrm{Cl}(4) \quad 2.3$	$2 \cdot 322$ (3)
$\mathrm{Pt}-\mathrm{N}(1) \quad 2$.	2.061 (9)	$\mathrm{Pt}-\mathrm{N}(2) \quad 2$.	2.045 (8)
$\mathrm{N}(11)-\mathrm{C}(11) \quad 1$.	1.272 (13)	$\mathrm{N}(21)-\mathrm{C}(21) \quad 1$.	1.322 (13)
$\mathrm{N}(12)-\mathrm{C}(11) \quad 1.3$	$1 \cdot 352$ (15)	$\mathrm{N}(22)-\mathrm{C}(21) \quad 1$.	1.329 (15)
$\mathrm{N}(11)-\mathrm{C}(12) \quad 1$.	1.377 (13)	$\mathrm{N}(21)-\mathrm{C}(22) \quad 1$.	1.337 (13)
$\mathrm{N}(12)-\mathrm{C}(13) \quad 1$.	1.344 (13)	$\mathrm{N}(22)-\mathrm{C}(23) \quad 1$.	1.350 (17)
$\mathrm{C}(12)-\mathrm{C}(13) \quad 1$.	1.365 (17)	$\mathrm{C}(22)-\mathrm{C}(23) \quad 1$.	1.350 (18)
$\mathrm{N}(12)-\mathrm{C}(14) \quad 1$.	1.474 (14)	$\mathrm{N}(22)-\mathrm{C}(24) \quad 1$.	1.478 (16)
$\mathrm{C}(14)-\mathrm{C}(15) \quad 1$.	1.479 (21)	$\mathrm{C}(24)-\mathrm{C}(25)$	1.465 (21)
$\mathrm{C}(15)-\mathrm{C}(16) \quad 1$.	1.489 (23)	$\mathrm{C}(25)-\mathrm{C}(26) \quad 1$.	1.502 (23)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	89.8 (1)	$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{N}(21)$	90.3 (2)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(3)$	90.8 (1)	$\mathrm{Cl}(3)-\mathrm{Pt}-\mathrm{Cl}(4)$	89.8 (1)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(4)$	179.3 (1)	$\mathrm{Cl}(3)-\mathrm{Pt}-\mathrm{N}(11)$	89.5 (2)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{N}(11)$	89.2 (2)	$\mathrm{Cl}(3)-\mathrm{Pt}-\mathrm{N}(21)$	178.5 (2)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{N}(21)$	89.9 (2)	$\mathrm{Cl}(4)-\mathrm{Pt}-\mathrm{N}(11)$	90.6 (2)
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{Cl}(3)$	90.9 (1)	$\mathrm{Cl}(4)-\mathrm{Pt}-\mathrm{N}(21)$	89.4 (2)
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{Cl}(4)$	90.4 (1)	$\mathrm{N}(11)-\mathrm{Pt}-\mathrm{N}(21)$	89.3 (3)
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{N}(11)$	178.9 (2)		
$\mathrm{Pt}-\mathrm{N}(11)-\mathrm{C}(11)$	125.0 (7)	$\mathrm{Pt}-\mathrm{N}(21)-\mathrm{C}(21)$	$124 \cdot 8$ (7)
$\mathrm{Pt}-\mathrm{N}(11)-\mathrm{C}(12)$	125.1 (7)	$\mathrm{Pt}-\mathrm{N}(21)-\mathrm{C}(22)$	127.3 (8)
$\mathrm{C}(11)-\mathrm{N}(11)-\mathrm{C}(12)$) 109.8 (9)	$\mathrm{C}(21)-\mathrm{N}(21)-\mathrm{C}(22)$) $107 \cdot 8(10)$
$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)$) $105 \cdot 3$ (9)	$\mathrm{N}(21)-\mathrm{C}(22)-\mathrm{C}(23)$) 108.7 (12)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{N}(12)$	108.0(10)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{N}(22)$	106.1 (12)
$\mathrm{C}(13)-\mathrm{N}(12)-\mathrm{C}(11)$) 107.3 (9)	$\mathrm{C}(23)-\mathrm{N}(22)-\mathrm{C}(21)$) 108.5 (10)
$\mathrm{N}(12)-\mathrm{C}(11)-\mathrm{N}(11)$	1) 109.6 (9)	$\mathrm{N}(22)-\mathrm{C}(21)-\mathrm{N}(21)$) 108.7 (10)
$\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{C}(14)$	4) 125.9 (9)	$\mathrm{C}(21)-\mathrm{N}(22)-\mathrm{C}(24)$	124.9 (10)
$\mathrm{C}(13)-\mathrm{N}(12)-\mathrm{C}(14)$	126.6(10)	$\mathrm{C}(23)-\mathrm{N}(22)-\mathrm{C}(24)$	126.5 (11)
$\mathrm{N}(12)-\mathrm{C}(14)-\mathrm{C}(15)$) $110 \cdot 6$ (10)	$\mathrm{N}(22)-\mathrm{C}(24)-\mathrm{C}(25)$) 113.8 (12)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$) $112 \cdot 0$ (13)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$) 113.0 (13)

squares from setting angles of 15 reflections with $15<2 \theta<26^{\circ}$ measured on diffractometer; 2876 independent reflections; $2 \theta_{\text {max }}=55.0^{\circ}$; variable $\theta-2 \theta$ scans, scan rate $2.0-29.3^{\circ} \mathrm{min}^{-1}$ depending on intensity, two standards measured every 50 reflections, variation in their intensities $\pm 4 \%$; corrections for Lorentz and polarization effects, but not for extinction; calculations performed on a NOVA 1200 computer with programs supplied by Syntex (1976), scattering factors for neutral atoms, corrected for anomalous dispersion (for Pt and Cl), from International Tables for X-ray Crystallography (1974); for structure solution and refinement 2663 amplitudes with $F \geq$ $7 \sigma(F)$ retained, $h 0 \rightarrow 11, k 0 \rightarrow 19, l-14 \rightarrow 13$, Patterson synthesis and difference-Fourier methods, full-matrix least-squares refinement minimizing $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$; $w=1 / \sigma^{2}(F) ; \mathrm{H}$ atoms included in geometrically calculated positions (with $B=4.5 \AA^{2}$), non-H atoms with anisotropic thermal parameters; an absorption correction following the DIFABS procedure (Walker \& Stuart, 1983) was applied to isotropically refined data; max. and min. correction factors 1.235 and 0.745 , respectively; max. Δ / σ in final cycle 0.1 ; max. and min. electron density in final difference map 0.20 and -0.28 e $\AA^{-3} ; R=0.038, w R=0.050, S=3.558$.

Discussion. The final atomic coordinates and equivalent isotropic thermal parameters are given in Table 1.* A perspective drawing of the $\left[\mathrm{PtCl}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right]$ complex is presented in Fig. 1. Table 2 shows interatomic distances and angles.

[^0]

Fig. 1. A view of the title complex, showing the atom numbering.

The complex consists of monomeric $\mathrm{PtCl}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{10}{ }^{-}\right.$ $\left.\mathrm{N}_{2}\right)_{2}$ units. The Pt atom is octahedrally surrounded by four Cl atoms, and by the N atoms from the two 1-propylimidazole ligands in a cis geometry. All four $\mathrm{Pt}-\mathrm{Cl}$ bonds are equal [ranging from $2 \cdot 310$ (3) to $2.322(3) \AA]$ and are practically identical to those observed in other six-coordinate $\mathrm{Pt}^{\mathrm{IV}}$ complexes: tetramethylethylenediammonium hexachloroplatinate(IV) [2.304-2.316 (5) Å] (Bisi-Castellani, ManottiLanfredi, Tiripicchio, Maresca \& Natile, 1984); 2.318 (2) \AA in 9-methylguaninium hexachloroplatinate(IV) dihydrate (Terzis \& Mentzafos, 1983) and 2.314 (1) \AA in $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ (Ohba \& Saito, 1984). The $\mathrm{Pt}-\mathrm{N}(11)$ and $\mathrm{Pt}-\mathrm{N}(21)$ bond distances of 2.061 (9) and 2.045 (8) \AA are in good agreement with those found for other compounds of $\mathrm{Pt}^{1 \mathrm{~V}}$ with nitrogen-donor ligands (Fanizzi, Natile, Maresca, Manotti-Lanfredi \& Tiripicchio, 1984).

The structural parameters of the two independent imidazole rings are very similar and are well within the range observed in other metal complexes and derivatives (Navarro-Ranninger, Martinez-Carrera \& Garcia-Blanco, 1983; Brouant, Barbe, Marsura \& Luu-Duc, 1985). Both imidazole rings are planar; the propyl group is twisted as indicated by the torsion angles $\mathrm{C}(13)-\mathrm{N}(12)-\mathrm{C}(14)-\mathrm{C}(15)=80(1)$ and $C(23)-N(22)-C(24)-C(25)=67(2)^{\circ}$. The dihedral angle between the planes of the two imidazole rings is $111(2)^{\circ}$, while the dihedral angles between the $N(11)$
and $\mathrm{N}(21)$ ligand-ring planes and the coordination plane around $\mathrm{Pt}^{\mathrm{IV}}$ are 124 (1) and 51 (1) ${ }^{\circ}$ respectively.

There are no abnormally short distances. The crystal structure consists of discrete molecules of $\mathrm{PtCl}_{4^{-}}$ (1-propylimidazole) ${ }_{2}$ with adjacent molecules held by van der Waals forces.

This work was supported by the Polish Academy of Sciences.

References

Bisi-Castellani, C., Manotti-Lanfredi, A. M., Tiripicchio, A., Maresca, L. \& Natile, G. (1984). Inorg. Chim. Acta, 90, 155-159.
Braddock, P. D., Connors, T. A., Jones, M., Khokhar, A. R., Melzack, D. H. \& Tobe, M. L. (1975). Chem.-Biol. Interact. 11, 145-161.
Brouant, P., Barbe, J., Marsura, A. \& Luu-duc, C. (1985). Acta Cryst. C41, 1369-1372.
Fanizzi, F. P., Natile, G., Maresca, L., Manotti-Lanfredi, A. M. \& Tiripicchio, A. (1984). J. Chem. Soc. Dalton Trans. pp. 1467-1470.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Navarro-Ranninger, M. C., Martinez-Carrera, S. \& GarciaBlanco, S. (1983). Acta Cryst. C39, 186-188.
Ohba, S. \& Saito, Y. (1984). Acta Cryst. C40, 1639-1641.
Syntex (1976). XTL/XTLE Structure Determination System. Syntex Analytical Instruments, Cupertino, California, USA.
Terzis, A. \& Mentzafos, D. (1983). Inorg. Chem. 22, $1140-$ 1143.

Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

A Neutron Diffraction Study of Bis(cyclopentadienyl)(methyl)(methylene)tantalum(V) at 15 K*

By F. Takusagawa \dagger and T. F. Koetzle
Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, USA
and P. R. Sharp \ddagger and R. R. Schrock
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

(Received 26 June 1987; accepted 16 October 1987)

Abstract

Ta}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{3}\right)\right], \quad M_{r}=340 \cdot 206\), monoclinic, $P 2_{\mathrm{I}} / c, \quad a=6.492$ (1), $b=11.539$ (2), c

[^1]0108-2701/88/030439-05\$03.00
$=15 \cdot 174(2) \AA, \quad \beta=117.33(2)^{\circ}, \quad V=1009.8(3) \AA^{3}$, $Z=4, \quad D_{x}=2.238 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ neutrons, $\quad \lambda=$ 1.1617 (2) $\AA, \mu=0.2473 \mathrm{~mm}^{-1}, F(000)=122.68 \mathrm{fm}$. $T=15(0.5) \mathrm{K}$. The structure has been refined based on 2446 reflections to yield an unweighted R value based on F^{2} of 0.043 . The molecule has approximate C_{s} point symmetry. All $\mathrm{C}-\mathrm{H}$ bond distances have been determined with e.s.d.'s $\leq 0.003 \AA$. The mean $\mathrm{C}-\mathrm{H}$ distance $[1.091$ (4) \AA] in the methyl group is slightly longer than that in the methylene group $[1.081(5) \AA$, while the © 1988 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters, least-squares-planes data and \mathbf{H}-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44402 (23 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

[^1]: * Research at Brookhaven National Laboratory carried out under contract DE-AC02-76CH00016 with the US Department of Energy, Office of Basic Energy Sciences. Research at MIT was sponsored by the National Science Foundation.
 \dagger Present address: Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
 \ddagger Present address: Department of Chemistry, University of Missouri at Columbia, Columbia, MO 65211 , USA.

